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This paper describes the resonance technique for determining the stiffness and damping
properties of a composite or composite structure. Pultruded GRP composites and optical
fibre cables (multi-component structures) were investigated. The resonance frequencies
(natural frequencies) of a material, or a system, are a function of its elastic properties,
dimensions and mass. This concept is used to determine the stiffness of a vibrated material
by the resonance technique, which applies only very low stresses through the application
of acoustic energy. This makes it applicable to measure the stiffness of multi-element
cables. The damping properties, in terms of Q' (internal friction) were determined by both
a free exponential decay curve and half-peak bandwidth methods. The influence of
specimen length and measurement set-up was investigated. The applicability and accuracy
of the resonance technique for a composite structure were discussed. The measured
elasticity of optical cables was found to be in good agreement with the derived theoretical
value. © 2000 Kluwer Academic Publishers

1. Introduction which is harder to quantify than is static load dam-
The dynamic resonance technique has been used &ge. High damping structures and high damping ma-
evaluate the modulus and damping behaviour of a variterials can effectively attenuate vibration. Ideal cable
ety of materials, including metals [1, 2], ceramics [3], structures possess a high damping capacity, in com-
polymers [2], metal matrix composites [4, 5] and, in bination with flexibility for easy handling, and with
a limited way, polymer-matrix composites [6—8]. The high stiffness in the longitudinal direction. Damping
few tests on composites have been on graphite/epoxXyehaviour is a basic concept in dynamic analysis. The
or hybrid laminates. This method has also found some&lamping factor is a material parameter reflecting the
use in particular ‘composite structures’. For instancecapacity for energy absorption. The energy absorption
Nishino [9] evaluated the amplitude dependence of inin elastic materials, such as metals, and ceramics, is
ternal friction in thin films on substrates. Wang [10] in- generally due to defects and cracks. For polymer mate-
vestigated the damping properties of an acrylic-coredtials, damping is mostly caused by viscoelasticity (the
laminated steel using cantilever-beam specimens. Howstrain response lagging behind the applied stresses).
ever there have not been any reports of its application tén fibre-reinforced composites, interfaces between fi-
either GRP pultruded rods, or to high-damping, multi-bres and the matrix play a major role in damping. For
element structures such as cables. It is the aim of thipolymer materials, DMTA (dynamic mechanical ther-
project to evaluate the technique for these applicationgnal analysis) is widely used to obtain the loss factor,
The longitudinal modulus is determined by exciting which is linked with damping properties. However, this
one end of a specimen and picking up the responsmethod is not sensitive enough to obtain the loss fac-
at the other end [11]. Torsional elasticity can be meator of a fibre composite which is much stiffer than a
sured by applying a sinusoidal wave in a torsional manpolymer.
ner[12]. Flexural resonance measurements can be madeA telecommunications cable is comprised of many
in two ways: cantilever vibration [4] and free-free vi- elements which are only held together by the outer
bration [13]. The free-free vibration mode is the methodsheath. In all dielectric self-supporting (ADSS) opti-
used in this project to evaluate stiffness and dampingal cables, pultruded GRP rods and aramid-fibre yarns
behaviour. are widely used as a load-bearing elements, or strength
Aerial cables experience static and dynamic stressesiembers. These materials are immune to electromag-
Dynamic movements cause a complex damage histomgetic interference and radio frequency interference
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when the cables are suspended next to high-voltage
power lines. Fig. 1a and b show the structure of theFigure 3 Schematic diagram of the dynamic resonance measurement.
cables in which GRP rods and aramid fibres are used
as strength members. Conventional mechanical bend-
ing tests are not applicable to determine the stiffnes2.2. Measurement technique
of these cable structures because sliding between el&he device used in measuring resonant frequencies, is
ments will occur when mechanical stresses are appliedllustrated in Fig. 3. The main function of the com-
In resonance measurements, the specimens are excitgdnents is to excite and detect resonant frequencies.
by acoustic energy. Sliding between elements of cablesihe device can apply waveforms in a wide range of
produced by this very small stress, can be taken to bfrequencies from an audio oscillator. As the oscillator
negligible. Once the resonance frequencies of a cablgequency is scanned, it eventually reaches one of the
are obtained, the stiffness and damping properties camechanical resonance frequencies of the specimen. The
be determined. amplitude of the output signals will show a tremendous
increase at the system resonant frequencies. This in-
creased amplitude is detected by the pickup, in contact
2. Materials and resonance measurements with the specimen. The spectrum of amplitude response
2.1. Materials to frequency can be recorded through a computer and
Two types of all dielectric self-supporting (ADSS) ca- @nalysed using a fast fourier transform (FFT).
bles were evaluated with the structures shown in Fig. 1a The system locates the oscillating system resonance,
and b, (both of which were manufactured by Pirelli Ca-and exhibits the relative magnitude of the resonance
bles Ltd.) Cable A contains a single 10 mm slottedPeaks. From the magnitude of the peaks, it is possible
GRP rod as a strength member. In Cable B, a layer of0 define the fundamental, seg:ond and third resonance.
aramid fibre yarns as the principal strength member id he fundamental resonance is the largest peak, and it
peripherally wrapped around the inner polymer sheatt¢an easily be detected. Thus only the fundamental res-
which accommodates the optical fibres. Two types ofnance was used to calculate stiffness and damping.
polymer sheath were examined with Cable B. One is
medium density polyethylene (MDPE) and the other
one is a copolymer of ethylene-vinyl acetate (EVA).2.3. Specimen suspension
The GRP strength members, which were investigatedThere are many ways for coupling the energy from the
are pultruded 3.0 mm circular rods and 10.0 mm slot-driver to specimens and detecting these vibrations [14].
ted rods. The structure of the latter type is illustrated inFor instance, the specimens may rest on foam rubber at
Fig. 2. Both strength members are E-glass/epoxy unidithe nodal points, or on a thick foam rubber pad in which
rectional composites. The circular rods contain 70% othe vibration is transmitted directly through a rod to an
glass fibres by volume while the fibre volume fraction appropriate part of the massive specimens. The sus-
of the slotted rods is 65%. pension method used here is two cotton threads, one
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Figure 4 Specimen motion in the flexural fundamental vibration mode
and the suspension arrangement of cotton threads.

being attached to a driver and the other being attacheggure 5 Diagram illustrating the definition 0@~ from a resonant
to a stylus as a pickup as shown in Fig. 3. In respeceeak.
of the fundamental flexural resonance mode, the mo-

tion of different parts of a specimen is illustrated in ) e
Fig. 4, showing in-phase oscillation at the two endsf’1mIOIItuOIe with time is evidence of the effect of damp-

out of phase oscillation in the centre part, and no moing- Oné common way to quantify damping in a system
tion at the two nodal points. In this mode, the two nodalS to measure the rate of decay of a free oscillation.

points are located at 0.2P4away from the two ends A fré€ vibration can be produced in a system by sud-
whereL is the length of a specimen. There is no motiond€nly removing an applied oscillating force. The peak

at nodal points, which are 0.2R4away from the two amplitudes follow an exponential decay given by:
ends in the fundamental flexural resonance. These two A= Age 2éfit 1)
points were marked on the specimens before the test,

because the two suspension lines should be located thghere:A is the amplitude at time Ag is the amplitude
same distance away from the nodes as in Fig. 4. Alwhen the oscillating force is removet, is the system
though the suspension position can be either outside qfatural frequency; is damping ratio, which determines
inside the node position, most measurements were cofhe system damping capacity. A quanti@y; %, known
ducted when the threads were located 6 mm outside thgs the internal friction of a material, can be obtained
nodes. This is because the test specimen was steadfiyom the damping ratio by:

suspended, and the response amplitude could easily be

detected. In order to determine the influence of the sus- Ql=2 2)
pension positions on the measured results, the cotton

threads were always positioned at the same distancd he internal friction is a measure of the breadth of the
(a or —a), away from the nodes. resonance peak. The value is also given by:

The length of specimens depends on their diameters fi — fi
and weights. Basically, thinner specimens were cut to Ql= 3
have a shorter length, and vice versa. In principle, a V3

relatively higher ratio of span to thickness produces yhere, f,,, and f, are frequencies above and below the
larger output in amplitudes at the same input powernayral frequency at an amplitude of half the maximum

Typical lengths and weights for the 3.0 GRP rods wergesonant amplitude. This method is called the half-peak
around 110 mm, and 1.57 g respectively, whereas thosg, nqwidth method.

for the slotted GRP rods were about 180 mm and 24 g. Fig. 5 shows the physical significance of Equation 3

Specimens were weighed #0.001 g, and the diame- i definingQ— by the frequencies at half the peak of the
ters were measured 50.02 mm. resonant amplitude. The bandwidth of a resonant peak
Cable A is mainly comprised of a slotted GRP rods getermined by the internal friction and the natural
and a polymer sheath. Compared with Cable B whichyequency of an oscillating system. A particular system

contains aramid fibres as strength members, Cable fasjts specific natural frequencies. Thus the bandwidth
is rather stiffer and was cut to 180 mm long for the s 3 function of the internal friction.

measurements. Cable B as shown in Fig. 1b, consists
of a MDPE (medium density polyethylene) sheath, and

was cut to be 214 mm long for the measurement. 3.2. The calculation of modulus from

resonant frequencies

3. Evaluation of damping and stiffness via The equations for calculating the modulus of elasticity
resonance were first developed by Pickett [15]. The relationship
3.1. Evaluation of the damping level of a between modulus of elasticity and resonance frequen-
vibrated system cies is determined by means of the formula:
Damping is associated with the dissipation of energy
in a vibrated system. The diminution of the vibration E=CWf? (4)
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where:W = weight of the specimenf, =resonant fre- spectrum of amplitude response to this range of fre-
quencyC = a factor which depends on the dimensionsquencies is recorded in a PC computer. Spectra of
of the specimen, the mode of vibration and Poisson’8.0 mm GRP rods, and 10.0 mm slotted GRP rods are

ratio. shown in Figs 6 and 7. Two peaks from the smaller
To obtainE, C must be determined. The expressionrods were observed in Fig. 6 within a frequency range
for C can be written as: from 0 to 5000 Hz. The peak with the higher resonance
47722 amplitude is located at 1100 Hz. The second peak with

C= WT (5)  much lower amplitude appears at 3280 Hz, which is the

second resonance. Both the resonant frequencies can be

where: g=the acceleration due to gravity=the used to calculate the value of stiffness by selecting
length of specimen, and,=the second moment of appropriately in Equation 5, which gives the result as
area of the cross-sectiom, is a factor, the value of 50.8 GPa. The slotted GRP rods show the first three
which depends on the mode of vibration. For the firstresonant peaks at 1220 Hz, 3090 Hz and 4400 Hz, re-
mode of vibrationm; =4.73. spectively, as shown in Fig. 7. In forced vibration, the

T isacorrection factor introduced by Goens [16] andfirst and second peaks are responsible for 90% of the
based upon the accurate differential equations givingtrain amplitude [17]. The amplitude of the fundamen-
the relationship between the resonant frequencies angl resonance is much larger than that of the second. For
the modulus. Spinner and Tefft [14] modifigdto the  the 3.0 mm rods, the third resonance peak seems too

expression: weak to be detected by this device. In previous research
_ 2 and applications of damping behaviour, more empha-
T=1+6.585(1+0.0752: +0.81097) sis has been put on the first, rather than the second or
d\? d\* higher resonance peaks.
X <|—> - 0-868<|_> Cables exhibit much high damping behaviour than

GRP rods because they contain a polymer sheath (such
8.34(1+ 0.2023u + 2.173“2)(%)4 as PE or EVA), which is a typical viscoelastic material.

- 2 Particularly in Cable B with aramid fibres as strength
1+ 6.338(1+ 0.1408% + 1‘536“2)(%) members, much interface friction occurs during vi-
(6)  bration as elements inside the cable are only loosely

bonded together. Consequently, these materials give

where: 11 is Poisson’s ratio (for fibre composites, yjide resonance peaks with low amplitudes. In Fig. 8,
u=0.27),d/1 is the ratio of the diameter to the length

of specimens.
For 10 mm slotted GRP rods inthe fundamentalmode

of vibration, wherd /1 = 0.05, the correction factor can

be obtained from Equation 6 83 =1.018495. Then, 9016 1100 Hz

once the fundamental resonant frequency is detectec

the modulus of elasticity for the slotted GRP rods can 0012

be calculated by combining Equations 4 and 5

Amplitude (v)

0.008
0.0787912 wf2T;
E= )
3280 Hz
. I . . 0.004
When specimens have a circular cross-section, the
equation for calculating the elastic modulus is writ- 5 J‘\m P — |
ten as: 0 1000 2000 3000 4000 5000 6000
|4 Frequency (Hz)
_ & ¢2
E =126188 d2 fl T (8) Figure 6 Response of amplitude to frequencies in the 3.0 mm GRP rods.
where f; is the first resonant frequency. 001
1160 Hz
0.008 +
4. Results and discussion
From the resonance measurements, the following pas | .
rameters were determined: resonant frequencies, res
sponse spectra of amplitude to frequencies, half-peals o004
bandwidth frequencies. The stiffness and damping (in-= |
ternal friction) could be calculated from the measured Mootz
frequencies. |
0 Vv-vmwv‘ﬂ‘"')
1] 1000 2000 3000 4000 5000 6000

4.1. Response spectra of amplitude
with frequency Frequency (Ho)

When input signals with a Wid_e range of freq_uenCieSvFigure 7 Response of amplitude to frequencies in the 10.0 mm slotted
(from 0 to 12 kHz), were applied to the specimens, aGRP rods.
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Figure 11 Logarithmic decrement of free decay vibration in Cable B
showing higher damping with EVA sheath and lower damping with PE
sheath.

Figure 9 Spectrum of amplitude response to frequencies in Cable B with
PE sheath.

the plot of amplitude response to frequencies in Ca{Cable B). Fig. 11 shows the trace of amplitudes when
ble A shows a sharp first resonant peak at 670 Hz, an@able B with MDPE and EVA sheaths was subjected
a small second resonant peak at 1790 Hz. However, ifo free vibration. In the plots, the exponential equation
the spectra of Cable B (as shown in Fig. 9), only the(Equation 1) was used to fit the decay of amplitude.
first peak can be seen. The output signals of the secondl good fit is obtained indicating that the logarithmic
peak are too weak to be detected, as such weak signalecrement is applicable to evaluate the damping val-
can be swamped by device electrical signals. ues. The high deviation which occurred in high damp-
ing materials is believed to result from the error in fitting
the exponential equation because only a small number
4.2. Damping measured by the free decay of cycles were available (Cable B with EVA sheath).
curve and half-peak bandwidth In the high damping system, the band-width method,
As described in Equations 1 and 3, the damping factoin comparison, becomes a more accurate method of de-
can be obtained from either the exponential free determining the damping factor. Also the measurement by
cay curve [3] or the bandwidth at the resonance peakandwidth is easier and simpler. Therefore the damp-
[1, 2]. The results of damping measured by the abovéng data in this paper were obtained via the half-peak
two methods were compared in Fig. 10 which shows théandwidth route.
damping values of five types of material or structure. In
general, these two methods give a very similar result for
each material or structure. However, for a high damp-4.3. Stiffness and damping factor of
ing material, the deviation tends to become larger. The materials
deviation of the damping value obtained from the twoThe measured values of stiffness and internal friction
methods reaches 12% in Cable B with a EVA sheathpf GRP materials and optical cables are summarised
whose damping factor is over 0.1. For the rest of materiin Table I, in which the modulus of the GRP materi-
als whose damping value is much lower, the deviationsls predicted by the rule of mixtures is also listed. The
are within 6.0%. In free vibration of the GRP materi- elastic properties of unidirectional composites are de-
als, the amplitude of vibration is attenuated, reachingermined by the elastic properties of the constituents
zero after a large number of cycles. However, it takesand their volume fractions, when a tensile or compres-
only a few cycles for the amplitude to approach zerosive load is applied to fibres. This is known as the rule
when free vibration occurs in a high damping structureof mixtures. In terms of unidirectional composites, the
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TABLE | Flexural modulus and internal friction of GRP rods

Standard Theoretical Standard
Materials Modulus (GPa) deviation (GPa) modulus (GPa) Q11073 deviation (10°%)
3.0 mm circular GRP 52.43 0.6 51.4 2.48 0.24
10.0 mm slotted GRP 45.66 0.56 47.8 1.75 0.04
Cable A 12.05 0.05 10.5 0.72 0.02
Cable B (MDPE) 4.34 0.08 N/A 41.56 0.17

rule of mixtures can be appropriately applied when theresonance measurements because of the very negligible
materials are subjected to a flexural load, as fibres arstress applied, which is unlikely to cause sliding.

evenly distributed in the matrix. E-glass fibres have a Flexural rigidity is defined a& | (the value of flex-
modulus of 72.4 GPa, while the modulus of epoxy resinural modulus multiplied by second moment of area).
is only 2.45 GPa [18]. The modulus of GRP rods wasThe stiffness of a multi-layer structure is related to the
calculated and listed in Table | based on the measurestiffness of individual layers by:

fibre volume fraction. The modulus values measured

by the resonant technique are very close to the cal- El = Eili+ Ealo+ -+ Enln 9)
culated values for circular and slotted GRP rods. The . .

measured value for the circular GRP is slightly higherWhere. subscripts, 2, ... n, stand for constituents of a
thanthe value predicted. Inthe resonance measuremeﬁ?alterlal or structure.

only a micro-scale stress was applied to the materi- In order to simplify the calculation, only two con-
als via acoustic waves. The modulus used to calculatétltuents (PE sheath and the GRP core) are considered

the value has been measured mechanically by an ag)g comprise Cable B. Here subscript 1 represents the

plied large stress. An imperfect elastic material show: E s_heath, and 2 represents the core GRP rods.

a higher modulus when a lower stress is applied. How- . l1ls the second moment of area of the PE sheath,
ever, the slotted GRP shows a slightly lower value tharf'Ven by:

the predicted value. This result is probably caused by 1

the calculation errorin the second moment of area of the Iy = gﬂdft (10)
slotted cross-section rod. In the calculation, a geomet-

rical simplification has been made, which leads to arwhered is the diameter of centre line of the PE sheath;
over-estimated value of | in Equation 5, which results int is the thickness of the sheathand|, are the second

a slightly lower modulus. However the standard devia-moment of area of the whole cable and the core rod,
tion coefficient in a set of five tests is only around 1.0%,respectivelyl, has been calculated to have a value of
which shows that the measurement is very consistent320.1 mn [19].

The accuracy of the stiffness is determined by the ac- Thus, the stiffness of the whole cable can be obtained
curate measurements of specimen dimensions, weighHtom:
and the resonant frequency, as seen in Equations 7 and =

. il + B2l
8. The apparatus was experimentally able to measure E=——"—
natural frequencies accurately-t®.5 Hz. This devia- |
tion will only create an error of 0.02% in a stiffness of When, E; =0.2 GPa (measured by DMTA), and
4 GPain Cable B (MDPE). E, =47.16 GPa (from Table I). The theoretical value of
E for Cable A calculated by Equation 11 as 10.6 GPa.
Compared with the stiffness determined from the
4.4. Theoretical values of stiffness of cables  resonant frequencyHexp, = 12.05 GPa in Table 1), the
To validate the measured stiffness of the cables obmeasuredvalueis 12% higherthan the theoretical value.
tained by the resonance technique, it is possible to dehen calculating the stiffness, the contribution from
rive the theoretical value from the structure and compothe other elements, such as the slot cap and binder yarns
nent elasticity. The term, ‘stiffness’, is adopted here toas shown in Fig. 1a was neglected to simplify the cal-
describe the relationship of stress to deflection, rathegulation. This makes the predicted value lower than the
than flexural modulus. Stiffness prediction in the struc-measured value. Consequently, we have reason to be-
ture of Cable B is much more complex, as the contri-lieve that the measured value is closer to the real value.
bution from aramid yarns is unknown, although it is
possible to predict the tensile modulus of the cables
provided that the quantity and modulus of individual 4.5. The influence of suspension positions
elements is known. To predict the stiffness of Cable A and specimen length
is practicable, as the stiffness is mainly determined byAs described previously, the resonance measurement
the outside PE sheath, and the core-slotted GRP rodeias conducted using two cotton threads to suspend
Also, the amounts and stiffnesses of these two materialspecimens. It is necessary to examine the influence
are known. A presumption must be made that there i®f the suspension position on measured values. Also
no sliding between the sheath and core rods under thidis examination was carried out using different length
stress transverse to the longitudinal direction. This preef specimens to examine the influence on the results
sumption is realistic in the application of the dynamicalwhen the suspension position remained unchanged. The

(11)
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120 Fig. 4 displays the response of amplitude in different
parts of a rod in the fundamental flexural mode. The
—+—1 e magnitude of the amplitude is clearly a function of the
1 50 distance to the nodes. How the suspension position af-
540 | fects the measured values in stiffness and damping can
160 < be perceived from Fig. 13. It is interesting to note that
. the relationship of internal friction to suspension po-
500 | T* sition has a very similar trend to that reflected by the
120 amplitude curve (in Fig. 4). The damping values are

at a minimum when the suspension positions are close

m E
58.0 |

Modulus (GPa)

(
Q' 1%

460 : : : : : : : 00 to the nodes. The variation in stiffness shows a similar
6 % 100 120 140 160 180 200 20 trend (the lowest value is around the nodes), but the
Length fam) suspension position has a smaller effect on the stiffness
Figure 12 Modulus and damping factor vs. specimen lengths in theValueS than on the dampmg values. The rapld decay

3.0 mm GRP rods. of vibration, which occurs at a higher amplitude, may
be interpreted as the larger damping when specimens
are suspended either close to the ends or close to the

examination was performed on 3.0 mm GRP rods withmiddle of the specimens. The suspension position rec-

lengths ranging from 80-200 mm. The results are plotommended is close to the nodes in order to achieve a
ted in Fig. 12 showing the variation of stiffness andgood result [14].

damping ratio with specimen length. As shownin Fig. 4,
no amplitude results when the cotton threads are placed
atthe two nodes in the fundamental vibration mode. Thé&. Conclusions
specimen should, therefore, be suspended at positiorhe resonance technique was employed to evaluate the
away from the nodal points. This investigation was con-stiffness and damping properties of GRP composites
tinued by changing the suspension positions—with bottand optical cables. A free-free flexural vibration mode
at the same distance away from the nodes. The resultgas applied to obtain the flexural modulus and internal
for E and Q1 are plotted against suspension positionfriction values. This technique produces accurate values
in Fig. 13. of modulus and damping for stiff materials (i.e. com-
As shownin Fig. 12, the measured values vary withinposites) and high damping, multi-element, composite
the range 51.27-52.25 GPa (ie almost constant) whestructures (i.e. optical cables). The damping value can
different specimen lengths are used. Such a small varise obtained from either the exponential free decay curve
ation could be from the natural scatter of material prop-or the half-peak bandwidth. For high damping struc-
erties. The results suggest that specimen length has nores, the latter approach is recommended to obtain a
significant effect on the measured value of stiffnessmore accurate value. The stiffness of a simple cable
Fig. 12 also shows that damping in the GRP rods is nostructure has been predicted from the behaviour of its
affected by the specimen length, except that the shortesbnstituents. The predicted values have shown that the
specimen appears to exhibit higher damping. A coutechnique can evaluate the real properties of the struc-
pling effect (or interference) between the test systemures. The position where specimens are suspended af-
and specimen may easily occur when a light specimeffects the values of the damping value, but has little ef-
is oscillated. For instance the shortest rod weighs onlfect on the values of stiffness. The specimen dimensions
0.85 g. Also the output signals are not stable enouglhave no influence on the measured stiffness and damp-
to determine an accurate resonance peak if specimeirsg values within alarge range. However, a proper range
have a very large ratio of length to diameter. For examof weight and dimension has to be selected to achieve a
ple, when the length exceeds 200 mm for the GRP rodgood resonance response according to the instrumental
with a diameter of 3.0 mm, it is unlikely that a stable capability and depending on the materials. In conclu-
response will be achieved. sion, the resonant technique appears a reliable and con-
sistent method for evaluating the dynamic behaviour
of composites and high-damping, multi-element

530 70 structures.
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