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Evaluation of damping and elastic properties of
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This paper describes the resonance technique for determining the stiffness and damping
properties of a composite or composite structure. Pultruded GRP composites and optical
fibre cables (multi-component structures) were investigated. The resonance frequencies
(natural frequencies) of a material, or a system, are a function of its elastic properties,
dimensions and mass. This concept is used to determine the stiffness of a vibrated material
by the resonance technique, which applies only very low stresses through the application
of acoustic energy. This makes it applicable to measure the stiffness of multi-element
cables. The damping properties, in terms of Q−1 (internal friction) were determined by both
a free exponential decay curve and half-peak bandwidth methods. The influence of
specimen length and measurement set-up was investigated. The applicability and accuracy
of the resonance technique for a composite structure were discussed. The measured
elasticity of optical cables was found to be in good agreement with the derived theoretical
value. C© 2000 Kluwer Academic Publishers

1. Introduction
The dynamic resonance technique has been used to
evaluate the modulus and damping behaviour of a vari-
ety of materials, including metals [1, 2], ceramics [3],
polymers [2], metal matrix composites [4, 5] and, in
a limited way, polymer-matrix composites [6–8]. The
few tests on composites have been on graphite/epoxy
or hybrid laminates. This method has also found some
use in particular ‘composite structures’. For instance,
Nishino [9] evaluated the amplitude dependence of in-
ternal friction in thin films on substrates. Wang [10] in-
vestigated the damping properties of an acrylic-cored,
laminated steel using cantilever-beam specimens. How-
ever there have not been any reports of its application to
either GRP pultruded rods, or to high-damping, multi-
element structures such as cables. It is the aim of this
project to evaluate the technique for these applications.

The longitudinal modulus is determined by exciting
one end of a specimen and picking up the response
at the other end [11]. Torsional elasticity can be mea-
sured by applying a sinusoidal wave in a torsional man-
ner [12]. Flexural resonance measurements can be made
in two ways: cantilever vibration [4] and free-free vi-
bration [13]. The free-free vibration mode is the method
used in this project to evaluate stiffness and damping
behaviour.

Aerial cables experience static and dynamic stresses.
Dynamic movements cause a complex damage history
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which is harder to quantify than is static load dam-
age. High damping structures and high damping ma-
terials can effectively attenuate vibration. Ideal cable
structures possess a high damping capacity, in com-
bination with flexibility for easy handling, and with
high stiffness in the longitudinal direction. Damping
behaviour is a basic concept in dynamic analysis. The
damping factor is a material parameter reflecting the
capacity for energy absorption. The energy absorption
in elastic materials, such as metals, and ceramics, is
generally due to defects and cracks. For polymer mate-
rials, damping is mostly caused by viscoelasticity (the
strain response lagging behind the applied stresses).
In fibre-reinforced composites, interfaces between fi-
bres and the matrix play a major role in damping. For
polymer materials, DMTA (dynamic mechanical ther-
mal analysis) is widely used to obtain the loss factor,
which is linked with damping properties. However, this
method is not sensitive enough to obtain the loss fac-
tor of a fibre composite which is much stiffer than a
polymer.

A telecommunications cable is comprised of many
elements which are only held together by the outer
sheath. In all dielectric self-supporting (ADSS) opti-
cal cables, pultruded GRP rods and aramid-fibre yarns
are widely used as a load-bearing elements, or strength
members. These materials are immune to electromag-
netic interference and radio frequency interference
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Figure 1 (a) Cable A: optical cable structure with a slotted GRP rod as
strength member. (b) Cable B: optical cables with a central GRP rod and
peripheral laid aramid fibre yarns as strength members.

when the cables are suspended next to high-voltage
power lines. Fig. 1a and b show the structure of the
cables in which GRP rods and aramid fibres are used
as strength members. Conventional mechanical bend-
ing tests are not applicable to determine the stiffness
of these cable structures because sliding between ele-
ments will occur when mechanical stresses are applied.
In resonance measurements, the specimens are excited
by acoustic energy. Sliding between elements of cables,
produced by this very small stress, can be taken to be
negligible. Once the resonance frequencies of a cable
are obtained, the stiffness and damping properties can
be determined.

2. Materials and resonance measurements
2.1. Materials
Two types of all dielectric self-supporting (ADSS) ca-
bles were evaluated with the structures shown in Fig. 1a
and b, (both of which were manufactured by Pirelli Ca-
bles Ltd.) Cable A contains a single 10 mm slotted
GRP rod as a strength member. In Cable B, a layer of
aramid fibre yarns as the principal strength member is
peripherally wrapped around the inner polymer sheath
which accommodates the optical fibres. Two types of
polymer sheath were examined with Cable B. One is
medium density polyethylene (MDPE) and the other
one is a copolymer of ethylene-vinyl acetate (EVA).
The GRP strength members, which were investigated,
are pultruded 3.0 mm circular rods and 10.0 mm slot-
ted rods. The structure of the latter type is illustrated in
Fig. 2. Both strength members are E-glass/epoxy unidi-
rectional composites. The circular rods contain 70% of
glass fibres by volume while the fibre volume fraction
of the slotted rods is 65%.

Figure 2 Configuration of a slotted GRP pultruded rod.

Figure 3 Schematic diagram of the dynamic resonance measurement.

2.2. Measurement technique
The device used in measuring resonant frequencies, is
illustrated in Fig. 3. The main function of the com-
ponents is to excite and detect resonant frequencies.
The device can apply waveforms in a wide range of
frequencies from an audio oscillator. As the oscillator
frequency is scanned, it eventually reaches one of the
mechanical resonance frequencies of the specimen. The
amplitude of the output signals will show a tremendous
increase at the system resonant frequencies. This in-
creased amplitude is detected by the pickup, in contact
with the specimen. The spectrum of amplitude response
to frequency can be recorded through a computer and
analysed using a fast fourier transform (FFT).

The system locates the oscillating system resonance,
and exhibits the relative magnitude of the resonance
peaks. From the magnitude of the peaks, it is possible
to define the fundamental, second and third resonance.
The fundamental resonance is the largest peak, and it
can easily be detected. Thus only the fundamental res-
onance was used to calculate stiffness and damping.

2.3. Specimen suspension
There are many ways for coupling the energy from the
driver to specimens and detecting these vibrations [14].
For instance, the specimens may rest on foam rubber at
the nodal points, or on a thick foam rubber pad in which
the vibration is transmitted directly through a rod to an
appropriate part of the massive specimens. The sus-
pension method used here is two cotton threads, one
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Figure 4 Specimen motion in the flexural fundamental vibration mode
and the suspension arrangement of cotton threads.

being attached to a driver and the other being attached
to a stylus as a pickup as shown in Fig. 3. In respect
of the fundamental flexural resonance mode, the mo-
tion of different parts of a specimen is illustrated in
Fig. 4, showing in-phase oscillation at the two ends,
out of phase oscillation in the centre part, and no mo-
tion at the two nodal points. In this mode, the two nodal
points are located at 0.224L away from the two ends
whereL is the length of a specimen. There is no motion
at nodal points, which are 0.224L away from the two
ends in the fundamental flexural resonance. These two
points were marked on the specimens before the test,
because the two suspension lines should be located the
same distance away from the nodes as in Fig. 4. Al-
though the suspension position can be either outside or
inside the node position, most measurements were con-
ducted when the threads were located 6 mm outside the
nodes. This is because the test specimen was steadily
suspended, and the response amplitude could easily be
detected. In order to determine the influence of the sus-
pension positions on the measured results, the cotton
threads were always positioned at the same distance,
(a or−a), away from the nodes.

The length of specimens depends on their diameters
and weights. Basically, thinner specimens were cut to
have a shorter length, and vice versa. In principle, a
relatively higher ratio of span to thickness produces a
larger output in amplitudes at the same input power.
Typical lengths and weights for the 3.0 GRP rods were
around 110 mm, and 1.57 g respectively, whereas those
for the slotted GRP rods were about 180 mm and 24 g.
Specimens were weighed to±0.001 g, and the diame-
ters were measured to±0.02 mm.

Cable A is mainly comprised of a slotted GRP rod
and a polymer sheath. Compared with Cable B which
contains aramid fibres as strength members, Cable A
is rather stiffer and was cut to 180 mm long for the
measurements. Cable B as shown in Fig. 1b, consists
of a MDPE (medium density polyethylene) sheath, and
was cut to be 214 mm long for the measurement.

3. Evaluation of damping and stiffness via
resonance

3.1. Evaluation of the damping level of a
vibrated system

Damping is associated with the dissipation of energy
in a vibrated system. The diminution of the vibration

Figure 5 Diagram illustrating the definition ofQ−1 from a resonant
peak.

amplitude with time is evidence of the effect of damp-
ing. One common way to quantify damping in a system
is to measure the rate of decay of a free oscillation.
A free vibration can be produced in a system by sud-
denly removing an applied oscillating force. The peak
amplitudes follow an exponential decay given by:

A = A0e−2πζ fnt (1)

where:A is the amplitude at timet ; A0 is the amplitude
when the oscillating force is removed,fn is the system
natural frequency.ζ is damping ratio, which determines
the system damping capacity. A quantity,Q−1, known
as the internal friction of a material, can be obtained
from the damping ratio by:

Q−1 = 2ζ (2)

The internal friction is a measure of the breadth of the
resonance peak. The value is also given by:

Q−1 = fh− fl√
3 fn

(3)

where, fh, and fl are frequencies above and below the
natural frequency at an amplitude of half the maximum
resonant amplitude. This method is called the half-peak
bandwidth method.

Fig. 5 shows the physical significance of Equation 3
in definingQ−1 by the frequencies at half the peak of the
resonant amplitude. The bandwidth of a resonant peak
is determined by the internal friction and the natural
frequency of an oscillating system. A particular system
has its specific natural frequencies. Thus the bandwidth
is a function of the internal friction.

3.2. The calculation of modulus from
resonant frequencies

The equations for calculating the modulus of elasticity
were first developed by Pickett [15]. The relationship
between modulus of elasticity and resonance frequen-
cies is determined by means of the formula:

E = CW f2 (4)
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where:W=weight of the specimen,f = resonant fre-
quency,C= a factor which depends on the dimensions
of the specimen, the mode of vibration and Poisson’s
ratio.

To obtainE, C must be determined. The expression
for C can be written as:

C = 4π2l 2

gm4I
T (5)

where: g= the acceleration due to gravity,l = the
length of specimen, and,I = the second moment of
area of the cross-section.m, is a factor, the value of
which depends on the mode of vibration. For the first
mode of vibration,m1= 4.73.

T is a correction factor introduced by Goens [16] and
based upon the accurate differential equations giving
the relationship between the resonant frequencies and
the modulus. Spinner and Tefft [14] modifiedT to the
expression:

T = 1+ 6.585(1+ 0.0752µ+ 0.8109µ2)

×
(

d

l

)2

− 0.868

(
d

l

)4

− 8.34(1+ 0.2023µ+ 2.173µ2)
(

d
l

)4
1+ 6.338(1+ 0.14081µ+ 1.536µ2)

(
d
l

)2
(6)

where: µ is Poisson’s ratio (for fibre composites,
µ= 0.27),d/ l is the ratio of the diameter to the length
of specimens.

For 10 mm slotted GRP rods in the fundamental mode
of vibration, whend/ l = 0.05, the correction factor can
be obtained from Equation 6 asT1= 1.018495. Then,
once the fundamental resonant frequency is detected,
the modulus of elasticity for the slotted GRP rods can
be calculated by combining Equations 4 and 5

E = 0.078791l 2w f 2
1 T1

I
(7)

When specimens have a circular cross-section, the
equation for calculating the elastic modulus is writ-
ten as:

E = 1.261886
ρl 4

d2
f 2
1 T1 (8)

where f1 is the first resonant frequency.

4. Results and discussion
From the resonance measurements, the following pa-
rameters were determined: resonant frequencies, re-
sponse spectra of amplitude to frequencies, half-peak
bandwidth frequencies. The stiffness and damping (in-
ternal friction) could be calculated from the measured
frequencies.

4.1. Response spectra of amplitude
with frequency

When input signals with a wide range of frequencies,
(from 0 to 12 kHz), were applied to the specimens, a

spectrum of amplitude response to this range of fre-
quencies is recorded in a PC computer. Spectra of
3.0 mm GRP rods, and 10.0 mm slotted GRP rods are
shown in Figs 6 and 7. Two peaks from the smaller
rods were observed in Fig. 6 within a frequency range
from 0 to 5000 Hz. The peak with the higher resonance
amplitude is located at 1100 Hz. The second peak with
much lower amplitude appears at 3280 Hz, which is the
second resonance. Both the resonant frequencies can be
used to calculate the value of stiffness by selectingm
appropriately in Equation 5, which gives the result as
50.8 GPa. The slotted GRP rods show the first three
resonant peaks at 1220 Hz, 3090 Hz and 4400 Hz, re-
spectively, as shown in Fig. 7. In forced vibration, the
first and second peaks are responsible for 90% of the
strain amplitude [17]. The amplitude of the fundamen-
tal resonance is much larger than that of the second. For
the 3.0 mm rods, the third resonance peak seems too
weak to be detected by this device. In previous research
and applications of damping behaviour, more empha-
sis has been put on the first, rather than the second or
higher resonance peaks.

Cables exhibit much high damping behaviour than
GRP rods because they contain a polymer sheath (such
as PE or EVA), which is a typical viscoelastic material.
Particularly in Cable B with aramid fibres as strength
members, much interface friction occurs during vi-
bration as elements inside the cable are only loosely
bonded together. Consequently, these materials give
wide resonance peaks with low amplitudes. In Fig. 8,

Figure 6 Response of amplitude to frequencies in the 3.0 mm GRP rods.

Figure 7 Response of amplitude to frequencies in the 10.0 mm slotted
GRP rods.
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Figure 8 Spectrum of amplitude response to frequencies in Cable A.

Figure 9 Spectrum of amplitude response to frequencies in Cable B with
PE sheath.

the plot of amplitude response to frequencies in Ca-
ble A shows a sharp first resonant peak at 670 Hz, and
a small second resonant peak at 1790 Hz. However, in
the spectra of Cable B (as shown in Fig. 9), only the
first peak can be seen. The output signals of the second
peak are too weak to be detected, as such weak signals
can be swamped by device electrical signals.

4.2. Damping measured by the free decay
curve and half-peak bandwidth

As described in Equations 1 and 3, the damping factor
can be obtained from either the exponential free de-
cay curve [3] or the bandwidth at the resonance peak
[1, 2]. The results of damping measured by the above
two methods were compared in Fig. 10 which shows the
damping values of five types of material or structure. In
general, these two methods give a very similar result for
each material or structure. However, for a high damp-
ing material, the deviation tends to become larger. The
deviation of the damping value obtained from the two
methods reaches 12% in Cable B with a EVA sheath,
whose damping factor is over 0.1. For the rest of materi-
als whose damping value is much lower, the deviations
are within 6.0%. In free vibration of the GRP materi-
als, the amplitude of vibration is attenuated, reaching
zero after a large number of cycles. However, it takes
only a few cycles for the amplitude to approach zero
when free vibration occurs in a high damping structure

Figure 10 Damping value obtained from half peak bandwidth and free
decay (logarithmic decrement).

Figure 11 Logarithmic decrement of free decay vibration in Cable B
showing higher damping with EVA sheath and lower damping with PE
sheath.

(Cable B). Fig. 11 shows the trace of amplitudes when
Cable B with MDPE and EVA sheaths was subjected
to free vibration. In the plots, the exponential equation
(Equation 1) was used to fit the decay of amplitude.
A good fit is obtained indicating that the logarithmic
decrement is applicable to evaluate the damping val-
ues. The high deviation which occurred in high damp-
ing materials is believed to result from the error in fitting
the exponential equation because only a small number
of cycles were available (Cable B with EVA sheath).
In the high damping system, the band-width method,
in comparison, becomes a more accurate method of de-
termining the damping factor. Also the measurement by
bandwidth is easier and simpler. Therefore the damp-
ing data in this paper were obtained via the half-peak
bandwidth route.

4.3. Stiffness and damping factor of
materials

The measured values of stiffness and internal friction
of GRP materials and optical cables are summarised
in Table I, in which the modulus of the GRP materi-
als predicted by the rule of mixtures is also listed. The
elastic properties of unidirectional composites are de-
termined by the elastic properties of the constituents
and their volume fractions, when a tensile or compres-
sive load is applied to fibres. This is known as the rule
of mixtures. In terms of unidirectional composites, the
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TABLE I Flexural modulus and internal friction of GRP rods

Standard Theoretical Standard
Materials Modulus (GPa) deviation (GPa) modulus (GPa) Q−1 (10−3) deviation (10−3)

3.0 mm circular GRP 52.43 0.6 51.4 2.48 0.24
10.0 mm slotted GRP 45.66 0.56 47.8 1.75 0.04
Cable A 12.05 0.05 10.5 0.72 0.02
Cable B (MDPE) 4.34 0.08 N/A 41.56 0.17

rule of mixtures can be appropriately applied when the
materials are subjected to a flexural load, as fibres are
evenly distributed in the matrix. E-glass fibres have a
modulus of 72.4 GPa, while the modulus of epoxy resin
is only 2.45 GPa [18]. The modulus of GRP rods was
calculated and listed in Table I based on the measured
fibre volume fraction. The modulus values measured
by the resonant technique are very close to the cal-
culated values for circular and slotted GRP rods. The
measured value for the circular GRP is slightly higher
than the value predicted. In the resonance measurement,
only a micro-scale stress was applied to the materi-
als via acoustic waves. The modulus used to calculate
the value has been measured mechanically by an ap-
plied large stress. An imperfect elastic material shows
a higher modulus when a lower stress is applied. How-
ever, the slotted GRP shows a slightly lower value than
the predicted value. This result is probably caused by
the calculation error in the second moment of area of the
slotted cross-section rod. In the calculation, a geomet-
rical simplification has been made, which leads to an
over-estimated value of I in Equation 5, which results in
a slightly lower modulus. However the standard devia-
tion coefficient in a set of five tests is only around 1.0%,
which shows that the measurement is very consistent.

The accuracy of the stiffness is determined by the ac-
curate measurements of specimen dimensions, weight,
and the resonant frequency, as seen in Equations 7 and
8. The apparatus was experimentally able to measure
natural frequencies accurately to±0.5 Hz. This devia-
tion will only create an error of 0.02% in a stiffness of
4 GPa in Cable B (MDPE).

4.4. Theoretical values of stiffness of cables
To validate the measured stiffness of the cables ob-
tained by the resonance technique, it is possible to de-
rive the theoretical value from the structure and compo-
nent elasticity. The term, ‘stiffness’, is adopted here to
describe the relationship of stress to deflection, rather
than flexural modulus. Stiffness prediction in the struc-
ture of Cable B is much more complex, as the contri-
bution from aramid yarns is unknown, although it is
possible to predict the tensile modulus of the cables
provided that the quantity and modulus of individual
elements is known. To predict the stiffness of Cable A
is practicable, as the stiffness is mainly determined by
the outside PE sheath, and the core-slotted GRP rods.
Also, the amounts and stiffnesses of these two materials
are known. A presumption must be made that there is
no sliding between the sheath and core rods under the
stress transverse to the longitudinal direction. This pre-
sumption is realistic in the application of the dynamical

resonance measurements because of the very negligible
stress applied, which is unlikely to cause sliding.

Flexural rigidity is defined asE I (the value of flex-
ural modulus multiplied by second moment of area).
The stiffness of a multi-layer structure is related to the
stiffness of individual layers by:

E I = E1I1+ E2I2+ · · · + EnIn (9)

where subscripts 1, 2, . . .n, stand for constituents of a
material or structure.

In order to simplify the calculation, only two con-
stituents (PE sheath and the GRP core) are considered
to comprise Cable B. Here subscript 1 represents the
PE sheath, and 2 represents the core GRP rods.

I1 is the second moment of area of the PE sheath,
given by:

I1 = 1

8
πd3

1t (10)

whered1 is the diameter of centre line of the PE sheath;
t is the thickness of the sheath;I andI2 are the second
moment of area of the whole cable and the core rod,
respectively.I2 has been calculated to have a value of
320.1 mm4 [19].

Thus, the stiffness of the whole cable can be obtained
from:

E = E1I1+ E2I2

I
(11)

When, E1= 0.2 GPa (measured by DMTA), and
E2= 47.16 GPa (from Table I). The theoretical value of
E for Cable A calculated by Equation 11 as 10.6 GPa.

Compared with the stiffness determined from the
resonant frequency (Eexp= 12.05 GPa in Table 1), the
measured value is 12% higher than the theoretical value.
When calculating the stiffness, the contribution from
the other elements, such as the slot cap and binder yarns
as shown in Fig. 1a was neglected to simplify the cal-
culation. This makes the predicted value lower than the
measured value. Consequently, we have reason to be-
lieve that the measured value is closer to the real value.

4.5. The influence of suspension positions
and specimen length

As described previously, the resonance measurement
was conducted using two cotton threads to suspend
specimens. It is necessary to examine the influence
of the suspension position on measured values. Also
this examination was carried out using different length
of specimens to examine the influence on the results
when the suspension position remained unchanged. The
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Figure 12 Modulus and damping factor vs. specimen lengths in the
3.0 mm GRP rods.

examination was performed on 3.0 mm GRP rods with
lengths ranging from 80–200 mm. The results are plot-
ted in Fig. 12 showing the variation of stiffness and
damping ratio with specimen length. As shown in Fig. 4,
no amplitude results when the cotton threads are placed
at the two nodes in the fundamental vibration mode. The
specimen should, therefore, be suspended at positions
away from the nodal points. This investigation was con-
tinued by changing the suspension positions–with both
at the same distance away from the nodes. The results
for E andQ−1 are plotted against suspension position
in Fig. 13.

As shown in Fig. 12, the measured values vary within
the range 51.27–52.25 GPa (ie almost constant) when
different specimen lengths are used. Such a small vari-
ation could be from the natural scatter of material prop-
erties. The results suggest that specimen length has no
significant effect on the measured value of stiffness.
Fig. 12 also shows that damping in the GRP rods is not
affected by the specimen length, except that the shortest
specimen appears to exhibit higher damping. A cou-
pling effect (or interference) between the test system
and specimen may easily occur when a light specimen
is oscillated. For instance the shortest rod weighs only
0.85 g. Also the output signals are not stable enough
to determine an accurate resonance peak if specimens
have a very large ratio of length to diameter. For exam-
ple, when the length exceeds 200 mm for the GRP rods
with a diameter of 3.0 mm, it is unlikely that a stable
response will be achieved.

Figure 13 Variation in modulus and damping factor with suspension
positions in the 3.0 mm GRP rod with a length of 140 mm.

Fig. 4 displays the response of amplitude in different
parts of a rod in the fundamental flexural mode. The
magnitude of the amplitude is clearly a function of the
distance to the nodes. How the suspension position af-
fects the measured values in stiffness and damping can
be perceived from Fig. 13. It is interesting to note that
the relationship of internal friction to suspension po-
sition has a very similar trend to that reflected by the
amplitude curve (in Fig. 4). The damping values are
at a minimum when the suspension positions are close
to the nodes. The variation in stiffness shows a similar
trend (the lowest value is around the nodes), but the
suspension position has a smaller effect on the stiffness
values than on the damping values. The rapid decay
of vibration, which occurs at a higher amplitude, may
be interpreted as the larger damping when specimens
are suspended either close to the ends or close to the
middle of the specimens. The suspension position rec-
ommended is close to the nodes in order to achieve a
good result [14].

5. Conclusions
The resonance technique was employed to evaluate the
stiffness and damping properties of GRP composites
and optical cables. A free-free flexural vibration mode
was applied to obtain the flexural modulus and internal
friction values. This technique produces accurate values
of modulus and damping for stiff materials (i.e. com-
posites) and high damping, multi-element, composite
structures (i.e. optical cables). The damping value can
be obtained from either the exponential free decay curve
or the half-peak bandwidth. For high damping struc-
tures, the latter approach is recommended to obtain a
more accurate value. The stiffness of a simple cable
structure has been predicted from the behaviour of its
constituents. The predicted values have shown that the
technique can evaluate the real properties of the struc-
tures. The position where specimens are suspended af-
fects the values of the damping value, but has little ef-
fect on the values of stiffness. The specimen dimensions
have no influence on the measured stiffness and damp-
ing values within a large range. However, a proper range
of weight and dimension has to be selected to achieve a
good resonance response according to the instrumental
capability and depending on the materials. In conclu-
sion, the resonant technique appears a reliable and con-
sistent method for evaluating the dynamic behaviour
of composites and high-damping, multi-element
structures.

Acknowledgements
Acknowledgements to Pirelli Cables Ltd which sup-
plied all the test materials and partly sponsored this
work. Particular thanks go to Mr Martin Davies, Mr
Ralph Sutehall and Mr Ian Lang for their help and col-
laboration. The authors would like to thank Dr David
Pearce, Dr Lee Tims and Dr Clive Ponton for help with
the resonance measurements and valuable discussions.
The help of the Royal Society and the School of Metal-
lurgy and Materials in setting up the resonance facility
is also gratefully acknowledged.

3791



References
1. M . B R O D T andR. S. L A K E S, Journal of Composite Materials

29 (1995) 1823.
2. G. F. L E E, Metallurgical and Materials Transactions A26A

(1995) 2819.
3. A . W O L F E N D E N et al., Journal of Materials Science30 (1995)

5502.
4. R. H. P A N T andR. F. G I B S O N, J. Engineering Materials and

Technology, Transactions of the ASME118(1996) 554.
5. E. J. L A V E R N I A et al., Metallurgical and Materials Transac-

tions A26A (1995) 2803.
6. J. Y . L A I andK . F. Y O U N G, Composite Structures30 (1995)

25.
7. G. X . S U I et al., Journal of Materials Science Letters14 (1995)

1218.
8. R. G R E I F andB. H E B E R T, Journal of Engineering Materials

and Technology117(1995) 94.
9. Y . N I S H I N O, K . T A N A H A S H I andS. A S A N O S, Philosoph-

ical Magazine A71 (1995) 139.
10. P. C. W A N G and R. J. F R I D R I C H, Journal of Composite

Materials30 (1996) 1628.

11. I . J I M E N O-F E R N A N D E Z et al., Journal of Acoustical Society
of America91 (1992) 2030.

12. S. S. K U M A R andP. R. M A N T E M A , Journal of Composite
Materials30 (1996) 918.

13. R. L E E T H A M andS. N. K U K U R E K A , Journal de Physique
IV 3 (1993) 1665.

14. S. S P I N N E RandW. E. T E F F T, ASTM proceedings61 (1961)
1221.

15. G. P I C K E T T, ibid. 45 (1945) 846.
16. E. G O E N S, E. Annalen der Physik11 (1931) 649.
17. P. S A C H S, in “Wind Forces in Engineering,” 2nd ed. (Pergamon

Press, 1978) 271.
18. C. A . H A R P E R, in “Handbook of Plastics, Elastomers, and Com-

posites,” 2nd ed. (McGraw-Hill, New York, 1992).
19. C. W E I , PhD Dissertation, The University of Birmingham,

1999.

Received 9 August
and accepted 10 December 1999

3792


